Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 994097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312960

RESUMEN

Among naturally produced polymers, bacterial cellulose is receiving enormous attention due to remarkable properties, making it suitable for a wide range of industrial applications. However, the low yield, the instability of microbial strains and the limited knowledge of the mechanisms regulating the metabolism of producer strains, limit the large-scale production of bacterial cellulose. In this study, Komagataeibacter xylinus K2G30 was adapted in mannitol based medium, a carbon source that is also available in agri-food wastes. K. xylinus K2G30 was continuously cultured by replacing glucose with mannitol (2% w/v) for 210 days. After a starting lag-phase, in which no changes were observed in the utilization of mannitol and in bacterial cellulose production (cycles 1-25), a constant improvement of the phenotypic performances was observed from cycle 26 to cycle 30, accompanied by an increase in mannitol consumption. At cycle 30, the end-point of the experiment, bacterial cellulose yield increased by 38% in comparision compared to cycle 1. Furthermore, considering the mannitol metabolic pathway, D-fructose is an intermediate in the bioconversion of mannitol to glucose. Based on this consideration, K. xylinus K2G30 was tested in fructose-based medium, obtaining the same trend of bacterial cellulose production observed in mannitol medium. The adaptive laboratory evolution approach used in this study was suitable for the phenotypic improvement of K. xylinus K2G30 in bacterial cellulose production. Metabolic versatility of the strain was confirmed by the increase in bacterial cellulose production from D-fructose-based medium. Moreover, the adaptation on mannitol did not occur at the expense of glucose, confirming the versatility of K2G30 in producing bacterial cellulose from different carbon sources. Results of this study contribute to the knowledge for designing new strategies, as an alternative to the genetic engineering approach, for bacterial cellulose production.

2.
Polymers (Basel) ; 14(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35631879

RESUMEN

In this study, twelve strains of acetic acid bacteria (AAB) belonging to five different genera were tested for their ability to produce levan, at 70 and 250 g/L of sucrose concentration, respectively. The fructan produced by the bacterial strains was characterized as levan by NMR spectroscopy. Most of the strains produced levan, highlighting intra- and inter-species variability. High yield was observed for Neoasaia chiangmaiensis NBRC 101099 T, Kozakia baliensis DSM 14400 T and Gluconobacter cerinus DSM 9533 T at 70 g/L of sucrose. A 12-fold increase was observed for N. chiangmaiensis NBRC 101099 T at 250 g/L of sucrose concentration. Levan production was found to be affected by glucose accumulation and pH reduction, especially in Ko. baliensis DSM 14400 T. All the Gluconobacter strains showed a negative correlation with the increase in sucrose concentration. Among strains of Komagataeibacter genus, no clear effect of sucrose on levan yield was found. Results obtained in this study highlighted the differences in levan yield among AAB strains and showed interdependence between culture conditions, carbon source utilization, and time of incubation. On the contrary, the levan yield was not always related to the sucrose concentration.

3.
FEMS Yeast Res ; 21(8)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34791177

RESUMEN

Evolution has provided a vast diversity of yeasts that play fundamental roles in nature and society. This diversity is not limited to genotypically homogeneous species with natural interspecies hybrids and allodiploids that blur species boundaries frequently isolated. Thus, life cycle and the nature of breeding systems have profound effects on genome variation, shaping heterozygosity, genotype diversity and ploidy level. The apparent enrichment of hybrids in industry-related environments suggests that hybridization provides an adaptive route against stressors and creates interest in developing new hybrids for biotechnological uses. For example, in the Saccharomyces genus where regulatory circuits controlling cell identity, mating competence and meiosis commitment have been extensively studied, this body of knowledge is being used to combine interesting traits into synthetic F1 hybrids, to bypass F1 hybrid sterility and to dissect complex phenotypes by bulk segregant analysis. Although these aspects are less known in other industrially promising yeasts, advances in whole-genome sequencing and analysis are changing this and new insights are being gained, especially in the food-associated genera Zygosaccharomyces and Kluyveromyces. We discuss this new knowledge and highlight how deciphering cell identity circuits in these lineages will contribute significantly to identify the genetic determinants underpinning complex phenotypes and open new avenues for breeding programmes.


Asunto(s)
Kluyveromyces , Saccharomyces , Zygosaccharomyces , Animales , Hibridación Genética , Kluyveromyces/genética , Estadios del Ciclo de Vida , Zygosaccharomyces/genética
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074777

RESUMEN

The evolution of resistance to insecticides threatens the sustainable control of many of the world's most damaging insect crop pests and disease vectors. To effectively combat resistance, it is important to understand its underlying genetic architecture, including the type and number of genetic variants affecting resistance and their interactions with each other and the environment. While significant progress has been made in characterizing the individual genes or mutations leading to resistance, our understanding of how genetic variants interact to influence its phenotypic expression remains poor. Here, we uncover a mechanism of insecticide resistance resulting from transposon-mediated insertional mutagenesis of a genetically dominant but insecticide-susceptible allele that enables the adaptive potential of a previously unavailable recessive resistance allele to be unlocked. Specifically, we identify clones of the aphid pest Myzus persicae that carry a resistant allele of the essential voltage-gated sodium channel (VGSC) gene with the recessive M918T and L1014F resistance mutations, in combination with an allele lacking these mutations but carrying a Mutator-like element transposon insertion that disrupts the coding sequence of the VGSC. This results in the down-regulation of the dominant susceptible allele and monoallelic expression of the recessive resistant allele, rendering the clones resistant to the insecticide bifenthrin. These findings are a powerful example of how transposable elements can provide a source of evolutionary potential that can be revealed by environmental and genetic perturbation, with applied implications for the control of highly damaging insect pests.


Asunto(s)
Alelos , Áfidos/genética , Elementos Transponibles de ADN , Genes Recesivos , Resistencia a los Insecticidas , Mutagénesis Insercional , Animales , Evolución Molecular
5.
Pestic Biochem Physiol ; 165: 104549, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32359540

RESUMEN

This study proposes a biochemical and molecular model for the interaction between the Drosophila suzukii type 1 tyramine receptor (DsTAR1) and monoterpenes. A preliminary molecular and functional characterization of DsTAR1 cDNA revealed that a 1.8 kb long ORF codes for a 600 amino acid polypeptide featuring seven transmembrane domains, as expected for a GPCR. A stable HEK 293 cell line expressing DsTAR1 was tested for responsiveness to tyramine (TA) and octopamine (OA). In intracellular calcium mobilization studies, TA led to a concentration-dependent increase in [Ca2+]i (pEC50 ~ 6.40), completely abolished by pre-incubation with the antagonist yohimbine 1 µM. Besides, in dynamic mass redistribution (DMR) studies, TA evoked a positive DMR signal in a concentration-dependent manner (pEC50 ~ 6.80). The recombinant cell line was then used to test three monoterpenes (thymol, carvacrol and α-terpineol) as putative ligands for DsTAR1. The terpenoids showed no agonist effects in both DMR and calcium mobilization assays, but they increased the potency of the endogenous ligand, TA, acting as positive allosteric modulators. Moreover, expression analysis on adults D. suzukii, exposed for 24, 72 or 120 h to a sublethal concentration of the three monoterpenes, showed a downregulation of DsTAR1. This evidence has led to hypothesize that the downregulation of DsTAR1 might be a compensatory mechanism in response to the positive allosteric modulation of the receptor induced by monoterpenes. Therefore, these findings might be useful for the development of a new generation of biopesticides against Drosophila suzukii, targeting TAR1.


Asunto(s)
Agentes de Control Biológico , Drosophila , Animales , Células HEK293 , Humanos , Monoterpenos , Receptores de Amina Biogénica
6.
Microorganisms ; 7(12)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842279

RESUMEN

Microorganisms represent most of the biodiversity of living organisms in every ecological habitat. They have profound effects on the functioning of any ecosystem, and therefore on the health of our planet and of human beings. Moreover, microorganisms are the main protagonists in food, medical and biotech industries, and have several environmental applications. Accordingly, the characterization and preservation of microbial biodiversity are essential not only for the maintenance of natural ecosystems but also for research purposes and biotechnological exploitation. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are crucial for the safeguarding and circulation of biological resources, as well as for the progress of life sciences. This review deals with the expertise and services of CCs, in particular concerning preservation and characterization of microbial resources, by pointing to the advanced approaches applied to investigate a huge reservoir of microorganisms. Data sharing and web services as well as the tight interconnection between CCs and the biotechnological industry are highlighted. In addition, guidelines and regulations related to quality management systems (QMSs), biosafety and biosecurity issues are discussed according to the perspectives of CCs and mBRCs.

7.
Yeast ; 36(12): 711-722, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31414502

RESUMEN

The so-called nonconventional yeasts are becoming increasingly attractive in food and industrial biotechnology. Among them, Zygosaccharomyces rouxii is known to be halotolerant, osmotolerant, petite negative, and poorly Crabtree positive. These traits and the high fermentative vigour make this species very appealing for industrial and food applications. Nevertheless, the biotechnological exploitation of Z. rouxii has been biased by the low availability of genetic engineering tools and the recalcitrance of this yeast towards the most conventional transformation procedures. Centromeric and episomal Z. rouxii plasmids have been successfully constructed with prototrophic markers, which limited their usage to auxotrophic strains, mainly derived from the Z. rouxii haploid type strain Centraalbureau voor Schimmelcultures (CBS) 732T . By contrast, the majority of industrially promising Z. rouxii yeasts are prototrophic and allodiploid/aneuploid strains. In order to expand the genetic tools for manipulating these strains, we developed two centromeric and two episomal vectors harbouring KanMXR and ClonNATR as dominant drug resistance markers, respectively. We also constructed the plasmid pGRCRE that allows the Cre recombinase-mediated marker recycling during multiple gene deletions. As proof of concept, pGRCRE was successfully used to rescue the kanMX-loxP module in Z. rouxii ATCC 42981 G418-resistant mutants previously constructed by replacing the MATαP expression locus with the loxP-kanMX-loxP cassette.


Asunto(s)
Farmacorresistencia Fúngica/genética , Integrasas/genética , Plásmidos/genética , Zygosaccharomyces/genética , Antibacterianos/farmacología , Centrómero/genética , Farmacorresistencia Fúngica/efectos de los fármacos , Ingeniería Genética , Marcadores Genéticos , Zygosaccharomyces/efectos de los fármacos , Zygosaccharomyces/metabolismo
8.
Front Genet ; 10: 137, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881382

RESUMEN

The pre-whole genome duplication (WGD) Zygosaccharomyces clade comprises several allodiploid strain/species with industrially interesting traits. The salt-tolerant yeast ATCC42981 is a sterile and allodiploid strain which contains two subgenomes, one of them resembling the haploid parental species Z. rouxii. Recently, different mating-type-like (MTL) loci repertoires were reported for ATCC42981 and the Japanese strain JCM22060, which are considered two stocks of the same strain. MTL reconstruction by direct sequencing approach is challenging due to gene redundancy, structure complexities, and allodiploid nature of ATCC42981. Here, DBG2OLC and MaSuRCA hybrid de novo assemblies of ONT and Illumina reads were combined with in vitro long PCR to definitively solve these incongruences. ATCC42981 exhibits several chimeric MTL loci resulting from reciprocal translocation between parental haplotypes and retains two MATa/MATα expression loci, in contrast to MATα in JCM22060. Consistently to these reconstructions, JCM22060, but not ATCC42981, undergoes mating and meiosis. To ascertain whether the damage of one allele at the MAT locus regains the complete sexual cycle in ATCC42981, we removed the MATα expressed locus by gene deletion. The resulting MATa/- hemizygous mutants did not show any evidence of sporulation, as well as of self- and out-crossing fertility, probably because incomplete silencing at the chimeric HMLα cassette masks the loss of heterozygosity at the MAT locus. We also found that MATα deletion switched off a2 transcription, an activator of a-specific genes in pre-WGD species. These findings suggest that regulatory scheme of cell identity needs to be further investigated in Z. rouxii protoploid yeast.

9.
Artículo en Inglés | MEDLINE | ID: mdl-30533882

RESUMEN

Here, we report draft genome sequences of the halotolerant and allodiploid strains Zygosaccharomyces rouxii ATCC 42981 and Zygosaccharomyces sapae ABT301T. Illumina and Oxford Nanopore MinION sequencing revealed genome sizes of 20.9 and 24.7 Mb, respectively. This information will be useful for deciphering the genetics of hybrid adaptation to high salt and sugar concentrations in nonconventional yeasts.

10.
FEMS Microbiol Lett ; 365(2)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228275

RESUMEN

In haploid Saccharomyces cerevisiae, a complex recombination system regulates mating-type switching and requires one MAT expression locus, two donor cassettes (HML and HMR) and the HO endonuclease that catalyses gene conversion. Zygosaccharomyces rouxii is the most distant species from S. cerevisiae with a functional HO, but with a poorly understood mating-type switching. Here, we described that two subcultures of the type strain CBS 732T underwent the α to a genotype switching leading to mixed MATα and MATa populations. Remarkably, during this event the donor cassette was copied into the MAT locus, except for its own 3΄ end, resulting in a new MATa2 gene copy different from the silenced HMRa2. Moreover, CBS 732T cells bypassed the cell-cycle control, which oversees HO transcription in S. cerevisiae, and expressed HO at the stationary phase. Despite HO dysregulation, mating-type switching seemed to occur rarely or belatedly during CBS 732T colony formation in most of the tested conditions. When morphology and mating behaviour were analysed, two subcultures displayed distinct outcross fertility responses. Overall, our data support that mating-type switching causes genotype instability and phenotypic novelties in CBS 732T, and open the question whether this mechanism is shared by other Z. rouxii haploid homothallic strains.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/genética , Proteínas Fúngicas/genética , Genes del Tipo Sexual de los Hongos , Haploidia , Zygosaccharomyces/genética , Secuencia de Aminoácidos , Genotipo , Fenotipo
11.
FEMS Yeast Res ; 16(6)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27493145

RESUMEN

The Zygosaccharomyces rouxii complex comprises three distinct lineages of halotolerant yeasts relevant in food processing and spoilage, such as Z. sapae, Z. rouxii and a mosaic group of allodiploid strains. They manifest plastic genome architecture (variation in karyotype, ploidy level and Na(+)/H(+) antiporter-encoding gene copy number), and exhibit diverse tolerances to salt concentrations. Here, we investigated accumulation of compatible osmolytes and transcriptional regulation of Na(+)/H(+) antiporter-encoding ZrSOD genes during salt exposure in strains representative for the lineages, namely Z. sapae ABT301(T) (low salt tolerant), Z. rouxii CBS 732(T) (middle salt tolerant) and allodiploid strain ATCC 42981 (high salt tolerant). Growth curve modelling in 2 M NaCl-containing media supplemented with or without yeast extract as nitrogen source indicates that moderate salt tolerance of CBS 732(T) mainly depends on nitrogen availability rather than intrinsic inhibitory effects of salt. All the strains produce glycerol and not mannitol under salt stress and use two different glycerol balance strategies. ATCC 42981 produces comparatively more glycerol than Z. sapae and Z. rouxii under standard growth conditions and better retains it intracellularly under salt injuries. Conversely, Z. sapae and Z. rouxii enhance glycerol production under salt stress and intracellularly retain glycerol less efficiently than ATCC 42981. Expression analysis shows that, in diploid Z. sapae and allodiploid ATCC 42981, transcription of gene variants ZrSOD2-22/ZrSOD2 and ZrSOD22 is constitutive and salt unresponsive.


Asunto(s)
Presión Osmótica , Cloruro de Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Estrés Fisiológico , Zygosaccharomyces/efectos de los fármacos , Zygosaccharomyces/fisiología , Medios de Cultivo/química , Perfilación de la Expresión Génica , Glicerol/metabolismo , Manitol/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Zygosaccharomyces/genética , Zygosaccharomyces/crecimiento & desarrollo
12.
PLoS One ; 11(4): e0152558, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27065237

RESUMEN

Allodiploidization is a fundamental yet evolutionarily poorly characterized event, which impacts genome evolution and heredity, controlling organismal development and polyploid cell-types. In this study, we investigated the sex determination system in the allodiploid and sterile ATCC 42981 yeast, a member of the Zygosaccharomyces rouxii species complex, and used it to study how a chimeric mating-type gene repertoire contributes to hybrid reproductive isolation. We found that ATCC 42981 has 7 MAT-like (MTL) loci, 3 of which encode α-idiomorph and 4 encode a-idiomorph. Two phylogenetically divergent MAT expression loci were identified on different chromosomes, accounting for a hybrid a/α genotype. Furthermore, extra a-idimorph-encoding loci (termed MTLa copies 1 to 3) were recognized, which shared the same MATa1 ORFs but diverged for MATa2 genes. Each MAT expression locus was linked to a HML silent cassette, while the corresponding HMR loci were located on another chromosome. Two putative parental sex chromosome pairs contributed to this unusual genomic architecture: one came from an as-yet-undescribed taxon, which has the NCYC 3042 strain as a unique representative, while the other did not match any MAT-HML and HMR organizations previously described in Z. rouxii species. This chimeric rearrangement produces two copies of the HO gene, which encode for putatively functional endonucleases essential for mating-type switching. Although both a and α coding sequences, which are required to obtain a functional cell-type a1-α2 regulator, were present in the allodiploid ATCC 42981 genome, the transcriptional circuit, which regulates entry into meiosis in response to meiosis-inducing salt stress, appeared to be turned off. Furthermore, haploid and α-specific genes, such as MATα1 and HO, were observed to be actively transcribed and up-regulated under hypersaline stress. Overall, these evidences demonstrate that ATCC 42981 is unable to repress haploid α-specific genes and to activate meiosis in response to stress. We argue that sequence divergence within the chimeric a1-α2 heterodimer could be involved in the generation of negative epistasis, contributing to the allodiploid sterility and the dysregulation of cell identity.


Asunto(s)
Cromosomas Fúngicos , Diploidia , Proteínas Fúngicas/genética , Genes del Tipo Sexual de los Hongos , Zygosaccharomyces/genética , Secuencia de Aminoácidos , Epistasis Genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Presión Osmótica , Filogenia , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Zygosaccharomyces/citología
13.
J Econ Entomol ; 108(6): 2737-42, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26470374

RESUMEN

Aim of the study was to investigate the performance of the new insecticide "spirotetramat" as an alternative solution of "abamectin" for the control of Cacopsylla pyri L. (Hemiptera: Psyllidae) in the context of an IPM program in European pear, Pyrus communis L.. Laboratory bioassays for the estimation of LC50 and LC90 of both insecticides were performed using four populations collected in Emilia-Romagna (Italy) orchards where different pest management strategies were used (organic, integrated, and conventional). The same populations were also analyzed for the main insecticide detoxifying activities in nymphs by spectrofluorimetric in vitro assays. The performance of the two insecticides was also tested on field on one population under integrated pest management conditions. The laboratory experiments showed that the LC90 of spirotetramat were lower than the highest field concentration allowed in Europe (172.80 mg AI liter(-1)) giving reassurance about the efficacy of the product. Concerning the abamectin, the laboratory bioassays did not show strong indications of resistance development of C. pyri populations of Emilia-Romagna. A similarity in enzyme detoxifying activity was observed in both insecticides indicating a general absence of a significant insecticide resistance. The field trial showed a high efficacy (>90 %) of spirotetramat on C. pyri already after 15 d from application, and it was significantly higher from abamectin. Overall, spirotetramat is one more choice for C. pyri control, as well as abamectin in order to minimize the risks of occurrence of insecticide resistance.


Asunto(s)
Compuestos Aza , Hemípteros , Insecticidas , Compuestos de Espiro , Animales , Control de Insectos , Ivermectina/análogos & derivados , Dosificación Letal Mediana
14.
J Econ Entomol ; 107(3): 910-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25026647

RESUMEN

Cyantraniliprole is a novel insecticide for control of multiple chewing and sucking insect pest species including the sweetpotato whitefly Bemisia tabaci (Gennadius), which is one of the most important polyphagous pests in tropical, subtropical, and Mediterranean regions. This study aims to evaluate the effects of cyantraniliprole on the probing behavior of B. tabaci on tomato. Electrical penetration graph data indicated that on plants treated with cyantraniliprole (foliar application), adult whiteflies of the genetic variant Q2 were not able to reach the phloem and consequently did not perform the activities represented by E1 and E2 waveforms, i.e., phloem salivation (during which inoculation of geminiviruses occurs) and phloem sap ingestion (during which geminiviruses are acquired by the whiteflies), respectively. The complete failure of B. tabaci biotype Q adults to feed from the phloem of tomato plants treated with cyantraniliprole could be explained by rapid cessation of ingestion because of the mode of action of this insecticide. Overall, these findings indicated that cyantraniliprole might represent a useful new tool for producers to protect tomato plants from damage by B. tabaci.


Asunto(s)
Hemípteros/efectos de los fármacos , Insecticidas/toxicidad , Pirazoles/toxicidad , ortoaminobenzoatos/toxicidad , Animales , Fenómenos Electrofisiológicos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Cadena Alimentaria , Geminiviridae/fisiología , Hemípteros/genética , Hemípteros/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Enfermedades de las Plantas/virología
15.
J Econ Entomol ; 107(3): 1245-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25026689

RESUMEN

The European grapevine moth, Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae), is the key pest of vineyard, Vitis vinifera L. In Italy, failures in field chemical pest control have been recently reported. The susceptibility to insecticides indoxacarb, methoxyfenozide, and emamectin benzoate was then evaluated in a L. botrana population collected from a vineyard in Emilia-Romagna (northeastern Italy) where pest management programs achieved unsatisfactory results. The field trial showed that the indoxacarb efficacy toward L. botrana was very low in the two timings of application (7.9 and -1.5%) in comparison with untreated control, while the efficacy of methoxyfenozide (76.1%) and emamectin benzoate (88.8%) was high. The decreased efficacy of indoxacarb was also supported by the results of the laboratory bioassay on neonate L. botrana larvae, in which the resistance ratio was 72-fold in comparison with that of the susceptible strain.


Asunto(s)
Hidrazinas , Resistencia a los Insecticidas , Insecticidas , Ivermectina/análogos & derivados , Hormonas Juveniles , Mariposas Nocturnas , Oxazinas , Animales , Italia , Larva , Vitis/crecimiento & desarrollo
16.
G3 (Bethesda) ; 4(6): 1011-25, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24939186

RESUMEN

Sexual reproduction and breeding systems are driving forces for genetic diversity. The mating-type (MAT) locus represents a mutation and chromosome rearrangement hotspot in yeasts. Zygosaccharomyces rouxii complex yeasts are naturally faced with hostile low water activity (aw) environments and are characterized by gene copy number variation, genome instability, and aneuploidy/allodiploidy. Here, we investigated sex-determination system in Zygosaccharomyces sapae diploid strain ABT301(T), a member of the Z. rouxii complex. We cloned three divergent mating type-like (MTL) α-idiomorph sequences and designated them as ZsMTLα copies 1, 2, and 3. They encode homologs of Z. rouxii CBS 732(T) MATα2 (amino acid sequence identities spanning from 67.0 to 99.5%) and MATα1 (identity range 81.5-99.5%). ABT301(T) possesses two divergent HO genes encoding distinct endonucleases 100% and 92.3% identical to Z. rouxii HO. Cloning of MATA: -idiomorph resulted in a single ZsMTLA: locus encoding two Z. rouxii-like proteins MATA: 1 and MATA: 2. To assign the cloned ZsMTLα and ZsMTLA: idiomorphs as MAT, HML, and HMR cassettes, we analyzed their flanking regions. Three ZsMTLα loci exhibited the DIC1-MAT-SLA2 gene order canonical for MAT expression loci. Furthermore, four putative HML cassettes were identified, two containing the ZsMTLα copy 1 and the remaining harboring ZsMTLα copies 2 and 3. Finally, the ZsMTLA: locus was 3'-flanked by SLA2, suggesting the status of MAT expression locus. In conclusion, Z. sapae ABT301(T) displays an aααα genotype missing of the HMR silent cassette. Our results demonstrated that mating-type switching is a hypermutagenic process in Z. rouxii complex that generates genetic diversity de novo. This error-prone mechanism could be suitable to generate progenies more rapidly adaptable to hostile environments.


Asunto(s)
Diploidia , Genes del Tipo Sexual de los Hongos , Zygosaccharomyces/genética , Región de Flanqueo 3' , Región de Flanqueo 5' , Secuencia de Aminoácidos , Clonación Molecular , Variación Genética , Datos de Secuencia Molecular , Filogenia , Sitios de Carácter Cuantitativo , Alineación de Secuencia , Zygosaccharomyces/clasificación
17.
Bull Entomol Res ; 103(3): 278-85, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23448149

RESUMEN

Esterase-based resistance in the peach-potato aphid, Myzus persicae (Sulzer), is generally due to one of two alternative amplified carboxylesterase genes, E4 or FE4 (fast E4). The E4 amplified form is distributed worldwide and it is correlated with a particular translocation between autosomes 1 and 3, whereas the FE4 form, which has hitherto not been found to be associated with chromosomal rearrangements, is typical of the Mediterranean regions. In this study, we present for the first time cytogenetic and molecular data on some M. persicae parthenogenetic lineages, which clearly show a chromosomal A1-3 translocation associated with esterase FE4 genes and unrelated to high levels of esterase-based resistance.


Asunto(s)
Áfidos/enzimología , Carboxilesterasa/genética , Productos Agrícolas/parasitología , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Translocación Genética/genética , Animales , Áfidos/genética , Secuencia de Bases , Análisis Citogenético , Cartilla de ADN/genética , Italia , Datos de Secuencia Molecular , Partenogénesis , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Exp Appl Acarol ; 57(1): 53-64, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22447041

RESUMEN

Problems with Tetranychus urticae are frequently reported in protected crops in Italy, particularly in roses where many introduced acaricides show a progressive loss of effectiveness. We have conducted bioassays to assess the response of some Italian strains of T. urticae to a number of acaricides. These include compounds that were widespread and frequently used in the past, but also some recently registered compounds. We investigated two T. urticae strains collected from rose growers where control failures were reported (SAN and PSE), together with a strain collected from unsprayed vegetables (BOSA). Adult females of the rose strains (SAN and PSE) were resistant to tebufenpyrad (Resistant Ratio-RR, RR(50) = 48.4 and 163.6) and fenpyroximate (RR(50) = 74.1 and 25.9) when compared to the susceptible BOSA strain. Lethal concentrations for these products were higher than the registered field rate. The PSE strain proved to be highly resistant to abamectin (RR(50) = 1,294.1). Variation in bifenazate susceptibility was detected amongst strains, but LC(90) values of SAN and PSE were still in the range of the registered field rate. In egg bioassays, the SAN and PSE strains exhibited high resistance levels to clofentezine (RR(50) = 66,473 and 170,714), hexythiazox (RR(50) = 70,244 and 159,493) and flufenoxuron (RR(50) = 61.9 and 117.9). But the recently introduced ovi/larvicides etoxazole and spirodiclofen exhibited high activity on all strains. The activity of detoxifying enzymes such as esterases, glutathione-S-transferases (GSTs) and cytochrome P450 monooxygenases (MFOs) was determined in these strains as a preliminary attempt to identify potential resistance mechanisms. Enzymatic assays showed that the rose strains exhibited 2.66 and 1.95-fold increased MFOs activity compared to the susceptible strain. Assays for GSTs revealed that only the SAN strain exhibited a significantly higher activity. In contrast, only the PSE strain showed a significant higher hydrolysis of 1-naphthyl acetate.


Asunto(s)
Acaricidas , Tetranychidae/enzimología , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Resistencia a Medicamentos , Esterasas/metabolismo , Femenino , Glutatión Transferasa/metabolismo , Italia , Óvulo/enzimología
19.
Fungal Genet Biol ; 45(12): 1582-90, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18952188

RESUMEN

Ploidy is a fundamental genetic trait with important physiological and genomic implications. We applied complementary molecular tools to highlight differences in genome size and ploidy between Zygosaccharomyces rouxii strain CBS 732T and other related wild strains (ATCC 42981, ABT 301, and ABT 601). The cell cycle analysis by flow cytometry revealed a genome size of 12.7+/-0.2 Mb for strain CBS 732T, 21.9+/-0.2 Mb for ATCC 42981, 28.1+/-1.3 Mb for ABT 301, and 39.00+/-0.3 Mb for ABT 601. Moreover, karyotyping analysis showed a high variability, with wild strains having a higher number of chromosomal bands than CBS 732T. The ploidy level was assessed comparing genome size from flow cytometry with the average haploid size from electrophoretic karyotyping. Strain CBS 732T showed an haploid DNA content, whereas the wild strains a diploid DNA content. In addition gene probe-chromosome hybridization targeted to ZSOD genes showed that wild strains with a diploid DNA content have two ZSOD copies located on different chromosomes.


Asunto(s)
Genoma Fúngico , Ploidias , Zygosaccharomyces/genética , Alelos , Citometría de Flujo , Genes Fúngicos , Cariotipificación
20.
Yeast ; 24(5): 403-17, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17366521

RESUMEN

The taxonomic status and species number of the genus Zygosaccharomyces have rapidly changed in the last years. In this study, two new osmotolerant Zygosaccharomyces strains isolated from traditional balsamic vinegar, viz. ABT301 and ABT601, were investigated to elucidate their taxonomic relationships with Zygosaccharomyces rouxii species. A multi-gene sequence approach was employed, including regions of the rDNA repeat [5.8S, two internal transcribed spacers (ITS) and the 26S D1/D2 domain], COX2 mitochondrial gene and two nuclear genes (SOD2 and HIS3). Cloning and sequence analysis of 5.8S-ITS rDNA revealed that these strains bear an unusual polymorphism for this region. Three highly divergent 5.8S-ITS sequences were detected, one identical to Z. rouxii, the other two showing some relatedness to Z. mellis. Sequence and gene number polymorphism was also observed for the protein-encoding nuclear genes SOD2 and HIS3, as two copies for each gene different from those found in Z. rouxii were detected. Analysis of the D1/D2 26S domain showed that ABT301 and ABT601 have only one type of D1/D2 sequence statistically different from that of Z. rouxii. The findings obtained in this work suggest that the genomic background of strains ABT301 and ABT601 is different from the other Zygosaccharomyces species. We speculated that they could belong to a new putative species related to Z. rouxii.


Asunto(s)
Ácido Acético , Zygosaccharomyces/aislamiento & purificación , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Histidina/química , Histidina/genética , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 5.8S/química , ARN Ribosómico 5.8S/genética , Alineación de Secuencia , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/genética , Zygosaccharomyces/clasificación , Zygosaccharomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...